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Based on the integral form of the fluid dynamic equations, a finite volume kinetic scheme
with arbitrary control volume and mesh velocity is developed. Different from the earlier
unified moving mesh gas-kinetic method [C.Q. Jin, K. Xu, An unified moving grid gas-kinetic
method in Eulerian space for viscous flow computation, J. Comput. Phys. 222 (2007) 155–
175], the coupling of the fluid equations and geometrical conservation laws has been
removed in order to make the scheme applicable for any quadrilateral or unstructured
mesh rather than parallelogram in 2D case. Since a purely Lagrangian method is always
associated with mesh entangling, in order to avoid computational collapsing in multidi-
mensional flow simulation, the mesh velocity is constructed by considering both fluid
velocity (Lagrangian methodology) and diffusive velocity (Regenerating Eulerian mesh
function). Therefore, we obtain a generalized Arbitrary-Lagrangian–Eulerian (ALE) method
by properly designing a mesh velocity instead of re-generating a new mesh after distortion.
As a result, the remapping step to interpolate flow variables from old mesh to new mesh is
avoided. The current method provides a general framework, which can be considered as a
remapping-free ALE-type method. Since there is great freedom in choosing mesh velocity,
in order to improve the accuracy and robustness of the method, the adaptive moving mesh
method [H.Z. Tang, T. Tang, Adaptive mesh methods for one-and two-dimensional hyper-
bolic conservation laws, SIAM J. Numer. Anal. 41 (2003) 487–515] can be also used to con-
struct a mesh velocity to concentrate mesh to regions with high flow gradients.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In fluid dynamics computations, two mesh systems are usually used: the Eulerian mesh to describe fluid motion at fixed
location, and the Lagrangian mesh to follow fluid elements with fluid velocity. Considerable progress has been made over the
past decades in both approaches [2,9,33,39].

In most numerical simulations, a computational domain including the boundary is fixed. In this case, the Eulerian method
can work very well in many applications. However, for unsteady flow calculations, moving boundaries or interfaces often
appear, such as the fluttering airfoils and multiphase flows. In these cases, the development of reliable methods for dynam-
ically deforming computational domains is required [30,32].

For a single phase flow with fixed computational boundary, in order to improve numerical accuracy, the development of
moving mesh method is still beneficial. Currently, there are many moving mesh methods in the literature. One example is
the static mesh movement method [34,35,4,31,1], where after an Eulerian step, a new mesh is generated according to certain
requirement. For example, according to a monitor function, the new mesh is concentrated to regions with high flow
. All rights reserved.
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gradients. Then, all flow variables are interpolated from the old to the new mesh at an instant of time. Certainly, in order to
keep the conservation, the flow update in the new mesh can be obtained using an equivalent flux function as the mesh
moves across a static flow distribution. Another moving mesh method is the dynamical one, such as the Lagrangian method
[25,37], where the fluid variables are updated inside each moving control volume within a time step. The dynamic moving
mesh method is mostly used to track fluid interfaces with topological change and resolve interface physics. In order to avoid
mesh distortion and tangling in the Lagrangian method, a widely used Arbitrary-Lagrangian–Eulerian (ALE) technique was
developed [10,23]. In the ALE method, the numerical algorithm varies from a purely Lagrangian method to a purely Eulerian
one through remapping so as to fix a distorted mesh. Due to the use of smoothing techniques in the remapping procedure, a
regular mesh topology can be maintained to keep the accuracy of the numerical solution. The ALE method consists of three
phases. The explicit Lagrangian phase, the rezoning phase, and the remapping phase. The rezoning phase was often carried
out by employing a process of grid generation, for which it is a critical step to keep the geometric quality of the mesh [38,6].
The remapping phase is also important in the ALE method to interpolate flow variables between meshes [19,22]. The phi-
losophy in the above approach is to remedy the mesh after distortion. Here, in our proposed scheme we are going to avoid
distorted mesh starting from the first place.

Recently, a successful moving mesh method for the Euler equations has been developed by Hui et al. for the purpose of
capturing the slip line crisply [13,14]. In this unified coordinate method, with a prescribed grid velocity, the inviscid flow
equations are transformed into a conservative form in the computational domain ðk; n;gÞ along with the geometric conser-
vation laws which control the mesh movement. In the unified coordinate method, the fluid equations and geometric evolu-
tion equations are coupled into an enlarged system, which is different from the transformed fluid equations alone [11].
Furthermore, due to the coupling of the fluid and geometric equations, for the first time a multidimensional Lagrangian
gas dynamic system has been written in a conservative form. Theoretically, it was realized that the multidimensional
Lagrangian system is only weakly hyperbolic. Numerically, for the unified coordinate method the fluid and geometric vari-
ables are updated simultaneously. In order to overcome the disadvantage in the Lagrangian method, the unified coordinate
system adopts a grid velocity, which is set to be equal to hq, where q ¼ ðU;VÞ is the fluid velocity and h is a parameter which
is to be determined by other conditions, such as the mesh alignment with the slip surface or keeping grid angle fixed during
the mesh movement. Therefore, the grid velocity can be changed locally according to the value of h. In a recent paper [15],
the grid velocity has been further generalized to ðhU; kVÞ, where h and k are two parameters to be determined. An achieve-
ment of the unified coordinate method is that the numerical diffusion across the slip line can be avoided or reduced to a
minimum level by enforcing the mesh without crossing the slip surface. However, in the complicated flow movement, in
order to avoid the severe mesh distortion, the constraints, such as mesh orthogonality, have to be used. As a result, in most
cases, this constraint automatically gives zero mesh velocity. Also, due to the coupling between the fluid and the geometrical
equations, the mesh topology is implicitly required to be parallelogram in 2D and parallelepiped in 3D cases, which is hardly
satisfied for complicated flow problems. So, in order to develop a generalized moving mesh method for any quadrilateral
mesh in 2D case, instead of starting with the differential equations, it is necessary to begin with the integral equations
directly.

Based on the unified coordinate transformation, a gas-kinetic scheme has been developed recently [17,18]. The corre-
sponding Navier–Stokes solutions in the moving system have been obtained. In the gas-kinetic representation, all macro-
scopic flow variables are the moments of a single gas distribution function and the inviscid and viscous effects can be
simply recovered through particle transport and collision processes [41], which is especially beneficial for the accurate cap-
turing of supersonic viscous and heat conducting flows. The unified gas-kinetic method includes the following ingredients.
First, the gas-kinetic BGK equation is transformed from the physical space ðt; x; yÞ to a computational space ðk; n;gÞ. Then, the
corresponding Euler and Navier–Stokes equations in the computational domain are obtained using the Chapman–Enskog
expansion. Second, a corresponding flux function across the computational interface in ðk; n;gÞ space is constructed. The
advantage of the method, as for the unified coordinate system [14], is that an exact conservative mathematical formulation
for both fluid and geometrical variables is used and kept in the numerical scheme. Since the gas-kinetic scheme solves the
viscous governing equations intrinsically, it is hard to resolve the Eulerian solution, such as the sharp slip discontinuity in the
unified coordinate system.

In this paper, we are going to construct a kinetic scheme on moving mesh for both Euler and Navier–Stokes equations. In
order to construct a scheme under any irregular mesh configuration, instead of using the unified coordinate transformation,
we are going to start with the integral equations of the conservation laws directly, and solve it by an finite volume scheme
with arbitrary mesh velocity. Since the numerical flux can be obtained directly across a moving interface with arbitrary mov-
ing mesh velocity by solving the gas-kinetic equation, the current moving mesh BGK (MMBGK) method can incorporate the
ALE ingredients into a properly designed mesh velocity so as to avoid severe mesh distortion. At the same time, the flow
physics can be mostly captured. The determination of the mesh velocity is an important part of the current method. The
methodology is that besides using the fluid velocity, such as the Lagrangian method, a diffusive or dissipative mesh velocity
has to be considered to keep mesh regularity. Since we believe that an optimal mesh velocity depends on individual flow
problem, under the general methodology the specific mesh velocity for different problems will be studied in this paper.
For example, for one-dimensional numerical examples an elliptic solver with a monitor function is used for the new mesh
generation, and subsequently the mesh velocity is determined by comparing the difference between the old and new
meshes. For the two-dimensional cases, a diffusive mesh velocity is designed and added into the Lagrangian formulation.
Therefore, the new method can not only keep the mesh quality, but also get accurate physical solutions. The merits of
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the current method is its unification of the ALE method into a single moving mesh method framework. In comparison with
the existing moving mesh methods and ALE methods, the remapping step for the flow variable interpolation between
meshes is absent, this subsequently avoids the numerical errors induced by the remapping process. Usually, the accuracy
could not be guaranteed in the remapping step when the mesh is irregularly distributed. The current method can be also
considered as a unification of static and dynamic moving mesh methods. The current method is based on the integral equa-
tions directly. The decoupling between the fluid equations and geometrical equations makes the method more general and
flexible for flow simulations with a defined mesh moving velocity.

This paper is organized as follows: In Section 2, we construct the finite volume method based on the integral equations
and the gas-kinetic flux evaluation on a moving mesh. Section 3 is dedicated to the determination of the mesh velocity.
Numerical experiments are given in Section 3. The last section is the conclusion.

2. Kinetic scheme on moving meshes

In this section, based on the integral equations with moving boundary, we will first construct the corresponding finite
volume scheme. Then, the gas-kinetic scheme will be used in the evaluation of numerical fluxes across a moving cell
interface.

2.1. Semi-discrete scheme

The conservative system for the mass, momentum and energy can be written in a unified differential form for both the
Euler and the Navier–Stokes equations [20]. An integral form over a moving control volume XðtÞ with an arbitrary boundary
velocity Ug can be written in the following form (see [10]),
d
dt

R
XðtÞ qdv ¼ �

R
SðtÞ qðU� UgÞ � nds;

d
dt

R
XðtÞ qUdv ¼ �

R
SðtÞ qUðU� UgÞ � nds;þ

R
SðtÞP � nds;

d
dt

R
XðtÞ qEdv ¼ �

R
SðtÞ qEðU� UgÞ � ndsþ

R
SðtÞP � U � nds�

R
SðtÞ q � nds:

8>><>>: ð2:1Þ
Here q;U;qE;P;q are the density, velocity, total energy, stress, and heat flux of the fluid, respectively, i.e., E ¼ 1
2 U2 þ e with e

being the specific internal energy, q ¼ �jrH with H, j being the temperature and the heat conductivity coefficient. The
stress tensor is defined by
Pij ¼ �dijP þ rij; i; j ¼ 1;2;
where rij is the viscous stress, P is the pressure. SðtÞ is the boundary of XðtÞ;n is the outward unit normal vector of SðtÞ. Note
that the above equations become the Eulerian form when Ug ¼ 0, and the Lagrangian form when Ug ¼ U.

The boundary velocity Ug in (2.1) is a function of time and position. Theoretically, it can be arbitrary to control the volume
XðtÞ evolution. The control volume XðtÞ is basically the computational cell.

Now, we consider a special polygon, such as a quadrilateral X ¼ ½ABCD� in Fig. 1. A piecewise constant boundary velocity
on each side of a control volume, i.e., Ui

gði ¼ 1; . . . ;4Þ, is assumed.
In order to evaluate the flux across the moving interface, it is important to consider the relative velocity of fluid to the

mesh. Denote the relative velocity by
eU ¼ U� Ug ;
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Fig. 1. Moving mesh. [ABCD] is the original mesh. [abcd] is the moved mesh with mesh velocity Ui
g in the corresponding edge.
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and the corresponding value at edge ei is given by
eUi ¼ ðU� UgÞjei
;

where e1 ¼ BC; e2 ¼ CD; e3 ¼ DA; e4 ¼ AB are the four edges of the quadrilateral X ¼ ½ABCD�, see Fig. 1.
The semi-discretization of the integral equations (2.1) is the following. First, the continuity equation is discretized as
d
dt

Z
XðtÞ

qdv ¼ �
Z

SðtÞ
qðU� UgÞ � nds ¼ �

Z
SðtÞ

qeU � nds ¼ �
X4

i¼1

Z
ei

qeU � nds ¼
X4

i¼1

Fq;ei
ðtÞ;
where
Fq;ei
ðtÞ ¼ �

Z
ei

qeU � nds
is the mass flux across the moving edge ei. Since the stress tensor is a function of velocity gradient, with a constant mesh
velocity Ui

g within a time step, the stress tensor remains unchanged in both stationary and moving mesh. Thus, the semi-
discetization of the momentum equations is given by
d
dt

Z
XðtÞ

qUdv ¼ �
Z

SðtÞ
qUðU� UgÞ � ndsþ

Z
SðtÞ

P � nds ¼ �
Z

SðtÞ
qeU eU � ndsþ

Z
SðtÞ

P � nds�
Z

SðtÞ
qUg

eU � nds

¼
X4

i¼1

fFq~U;ei
ðtÞ þ Ui

gFq;ei
ðtÞg;
where
F
qeU;ei
ðtÞ ¼ �

Z
SðtÞ

qeU eU � ndsþ
Z

SðtÞ
P � nds
is the momentum flux across the moving edge ei. Similarly, the energy equation is semi-discretized by
d
dt

Z
XðtÞ

qEdv ¼ �
Z

SðtÞ
qEðU� UgÞ � ndsþ

Z
SðtÞ

P � U � nds�
Z

SðtÞ
q � nds

¼ �
Z

SðtÞ
q

1
2

U2 þ e
� �eU � ndsþ

Z
SðtÞ

P � U � nds�
Z

SðtÞ
q � nds

¼ �
Z

SðtÞ
q

1
2

~U2 þ e
� �eU � ndsþ

Z
SðtÞ

P � eU � nds�
Z

SðtÞ
q � nds

þ
Z

SðtÞ
P � Ug � nds�

Z
SðtÞ

qUg � eU eU � nds� 1
2

Z
SðtÞ

qU2
g
eU � nds

¼
X4

i¼1

F
qeE;ei
ðtÞ þ Ui

gFqeU;ei
ðtÞ þ 1

2
ðUi

gÞ
2Fq;ei

ðtÞ
� �

;

where
F
qeE;ei
ðtÞ ¼ �

Z
SðtÞ

q
1
2
eU2 þ e

� �eU � ndsþ
Z

SðtÞ
P � eU � nds�

Z
SðtÞ

q � nds
is the energy flux across the moving edge ei.
In summary, the semi-discrete form of integral equations (2.1) reads
d
dt

R
XðtÞ qdv ¼

P4
i¼1
Fq;ei

ðtÞ;

d
dt

R
XðtÞ qUdv ¼

P4
i¼1
fF

qeU;ei
ðtÞ þ Ui

gFq;ei
ðtÞg;

d
dt

R
XðtÞ qEdv ¼

P4
i¼1
F

qeE;ei
ðtÞ þ Ui

gFqeU;ei
ðtÞ þ 1

2 ðU
i
gÞ

2Fq;ei
ðtÞ

� �
:

8>>>>>>>><>>>>>>>>:
ð2:2Þ
In the numerical computation, an operator splitting method is used. At the cell interface, we have to project the velocity to
normal and the tangential direction. More precisely, with the normal direction n ¼ ðcos a; sin aÞ of the edge ei, and
U ¼ ðU;VÞ;Ug ¼ ðUg ;VgÞ, the normal velocity component U0 and tangential component V 0 are given by
U0 ¼ U cos aþ V sina;
V 0 ¼ �U sin aþ V cos a;

�
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and ~U0 ¼ ð~U0; ~V 0Þ. In this way, the above Eq. (2.2) can be written in component-wise form:
d
dt

R
XðtÞ qdv ¼

P4
i¼1
Fq;ei

ðtÞ;

d
dt

R
XðtÞ qU dv ¼

P4
i¼1
fFq~U0 ;ei

ðtÞ sin aþ Fq~V 0 ;ei
ðtÞ cos aþ Ui

gFq;ei
ðtÞg;

d
dt

R
XðtÞ qV dv ¼

P4
i¼1
f�Fq~U0 ;ei

ðtÞ cos aþ Fq~V 0 ;ei
ðtÞ sin aþ Vi

gFq;ei
ðtÞg;

d
dt

R
XðtÞ qEdv ¼

P4
i¼1
F

qeE ;ei
ðtÞ þ ðUi

g sina� Vi
g cos aÞFq~U0 ;ei

ðtÞ þ ðUi
g cos aþ Vi

g sin aÞFq~V 0 ;ei
ðtÞ

�
þ 1

2 ðU
i
gÞ

2 þ ðVi
gÞ

2
� �

Fq;ei
ðtÞ
o
;

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð2:3Þ
where the numerical fluxes on the right-hand side of (2.3) are along the normal direction of the moving cell interface ei. We
will show in the next section how to evaluate the numerical fluxes by using a gas-kinetic scheme. The above equations rep-
resent precisely a finite volume scheme with moving cell interfaces.

2.2. Gas-kinetic flux function: a generalized Riemann solution for the Navier–Stokes equations

The time evolution of the conservative flow variables in (2.3) depends on the flux evaluation on a moving reference of
frame with grid velocity Ui

g . Theoretically, any flux function for the Navier–Stokes equations can be used here, such as a Rie-
mann solver for the inviscid fluxes and the central difference for the viscous part. In this paper, we shall use the gas-kinetic
scheme for the flux evaluation. The main reasons using the gas-kinetic scheme are that the gas-kinetic flux function is time-
accurate, therefore, the semi-discrete form (2.3) can be integrated in time explicitly. At the same time, the inviscid and vis-
cous fluxes are obtained simultaneously through the solution of a single gas distribution function under the initial condition
of a generalized Riemann problem.

For compressible flow simulations, a finite volume gas-kinetic BGK scheme has been developed and applied to many
physical and engineering problems [5,41,16,26]. Similar to many other finite volume methods, the crucial step in the con-
struction of a gas-kinetic scheme is the flux evaluation at a cell interface. The distinguishable feature of the gas-kinetic
BGK scheme is that a Navier–Stokes flux is given directly from the MUSCL-type reconstructed initial data [36], where both
flow variable gradients on the left and right sides of a cell interface participate in the construction of the time-dependent
solution.

In this section, we will construct the numerical fluxes in (2.3) on moving meshes by using the BGK model. The difference
of our moving mesh kinetic scheme from the scheme in an Eulerian reference of frame is that all velocities presented in this
subsection are the relative velocity. The simplicity of the gas-kinetic scheme for a moving mesh system is due to the fact that
the particle transport is always on a straight line in any inertia reference of frame.

The BGK model in two dimensions can be written as (see [3,40,41])
ft þ ufx þ vfy ¼
g � f

s
; ð2:4Þ
where f is the gas distribution function and g is the equilibrium state approached by f ; ðu;vÞ is the particle velocity. Both f
and g are functions of x; y; t;u;v and the internal variable n. The particle collision time s is related to the viscosity coefficient.

Generally, the equilibrium state is a Maxwellian distribution
g ¼ q
k
p

� �Kþ2
2

e�k½ðu�~U0 Þ2þðv�~V 0 Þ2þn2 �; ð2:5Þ
where ~U0 ¼ ð~U0; ~V 0Þ is the relative velocity as before, k ¼ m=ð2kTÞ with m; k and T being the molecular mass, the Boltzmann
constant and the temperature, respectively. The total number of degree of freedom K in n is equal to ð4� 2cÞ=ðc� 1Þ with c
being the specific heat ratio, and n2 denotes n2 ¼ n2

1 þ n2
2 þ � � � þ n2

K .
The relation between the mass q, the momentum ðq~U0;q~V 0Þ, the energy qeE and the distribution function f is given by
ðq;q~U0;q~V 0;qeEÞT ¼ Z Wf dN;
where
W ¼ ðw1;w2;w3;w4Þ
T ¼ 1;u;v ;1

2
ðu2 þ v2 þ n2Þ

� �T

;

and dN ¼ dudv dn is the volume element in the phase space.
Since the mass, momentum, and energy are conservative quantities during particle collisions, f and g satisfy the conser-

vation constraints
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Z
ðg � f ÞwadN ¼ 0; a ¼ 1;2;3;4;
at any point in space and time.
For a local equilibrium state with f ¼ g, taking the moments of W to the Eq. (2.4), we find that
Z

ðgt þ ugx þ vgyÞWdN ¼ 0; ð2:6Þ
from which the corresponding Euler equations with e ¼ Kþ2
4k and P ¼ q=ð2kÞ can be obtained.

On the other hand, to the first order of s, the Chapman–Enskog expansion gives f ¼ g � sðgt þ ugx þ vgyÞ. Taking the mo-
ments of W to the BGK Eq. (2.4) with this f, we get
Z

ðgt þ ugx þ vgyÞWdN ¼ s
Z
ðgtt þ 2ugxt þ u2gxx þ 2vgyt þ 2uvgxy þ v2gyyÞWdN; ð2:7Þ
from which the compressible Navier–Stokes equations can be derived.
Therefore, from (2.6) and (2.7) we see that as soon as the solution of (2.4) is known, the inviscid and viscous fluxes can be

obtained by taking appropriate moments of W to f. This is in fact the basic idea in the construction of numerical fluxes of gas-
kinetic schemes.

The general solution f of (2.4) at any point ðx; yÞ and time t is given by
f ðx; y; t;u;vÞ ¼ 1
s

Z t

0
gðx0; y0; t0;u;vÞe�ðt�t0 Þ=s dt0 þ e�t=sf0ðx� ut; y� vtÞ; ð2:8Þ
where x0 ¼ x� uðt � t0Þ and y0 ¼ y� vðt � t0Þ.
To construct a second order scheme, we only need to use a MUSCL-type conservative flow variable distributions on the

left- and right-hand sides of a cell interface, and to obtain the corresponding g; f0 in (2.8) at the beginning of each time step.
The details are omitted here. Once f0 and g in (2.8) are determined, the fluxes in (2.3) across a cell interface can be obtained
by taking moments of W to the solution f given in (2.8):Z
FW;ei
ðtÞ ¼ ðFq;ei

;Fq~U0 ;ei
;Fq~V 0 ;ei

;F
qeE ;ei
ÞTðtÞ ¼ Wf ð0; 0; t;u;vÞdN; ð2:9Þ
where W ¼ ðw1;w2;w3;w4Þ
T are the moments defined before. The particle collision time s in the above gas distribution func-

tion is determined by the viscosity coefficient. For example, at each cell interface s ¼ l=P is used, where l is the local
dynamical viscosity coefficient which may depend on local density and temperature.

2.3. Fully-discrete scheme

The numerical flux in (2.9) is time-accurate [41]. The integration over a time step from tn to tnþ1 is to yield
FW;ei
¼
Z tnþ1

tn
FW;ei

ðtÞdt:
Thus, integrating (2.3) with respect to time and using the above identity, we obtain
R
X0 qdv ¼

R
X qdv þ

P4
i¼1

Fq;ei
;

R
X0 qU dv ¼

R
X qU dv þ

P4
i¼1
fFq~U0 ;ei

sin aþ Fq~V 0 ;ei
cos aþ Ui

gFq;ei
g;

R
X0 qV dv ¼

R
X qV dv þ

P4
i¼1
f�Fq~U0 ;ei

cos aþ Fq~V 0 ;ei
sinaþ Vi

gFq;ei
g;

R
X0 qEdv ¼

R
X qEdv þ

P4
i¼1

F
qeE;ei
þ ðUi

g sin a� Vi
g cos aÞFq~U0 ;ei

þ ðUi
g cos aþ Vi

g sinaÞFq~V 0 ;ei
þ 1

2 ððU
i
gÞ

2 þ ðVi
gÞ

2ÞFq;ei

� �
;

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð2:10Þ
where X0 ¼ Xðtnþ1Þ ¼ ½abcd� and X ¼ XðtnÞ ¼ ½ABCD�, see Fig. 1. If we denote A ¼ 1
jXj
R

X AðxÞdx, we get the fully discrete form of
(2.10):
qnþ1 ¼ qnjXj þ
P4
i¼1

Fq;ei

� ��
jX0j;

qUnþ1 ¼ qUnjXj þ
P4
i¼1
½Fq~U0 ;ei

sin aþ Fq~V 0 ;ei
cos aþ Ui

gFq;ei
�

� ��
jX0j;

qVnþ1 ¼ qVnjXj þ
P4
i¼1
½�Fq~U0 ;ei

cos aþ Fq~V 0 ;ei
sinaþ Vi

gFq;ei
�

� ��
jX0j;

qEnþ1 ¼ qEnjXj þ
P4
i¼1

F
qeE;ei
þ ðUi

g sin a� Vi
g cos aÞFq~U0 ;ei

þ ðUi
g cos aþ Vi

g sinaÞFq~V 0 ;ei
þ 1

2 ððU
i
gÞ

2 þ ðVi
gÞ

2ÞFq;ei

	 
� ��
jX0j:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð2:11Þ
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The conservative flow variables can be updated once the numerical fluxes are evaluated on a moving cell interface. In the
above formulation, in the 2D case we basically don’t require a quadrangular mesh. Actually, X can be any shape with any
number of linear sections to compose of the boundary of the control volume.

3. Mesh velocity determination and numerical experiments

In this section, we will discuss how to construct the mesh velocity Ug . In the multidimensional case, the method of con-
structing Ug here is functionally equivalent to unify the three steps in ALE method by considering the mesh regularity in the
mesh velocity determination. In the one-dimensional case, based on the use of a homogeneous elliptic solver [34], a new
mesh will be generated at the beginning of each time step. Then, the mesh velocity will be determined by comparing the
location of the new mesh with that of the old mesh. In the two-dimensional case, if we simply set Ug to be equal to the fluid
velocity U, a Lagrangian method is obtained. In this case, it is very difficult to keep the mesh regularity, and the mesh will get
distorted and entangled under large deformation. Therefore, in two dimensions, besides using the fluid velocity U, we will
add a suitable diffusive mesh velocity to smooth out the possibly distorted meshes in the first place. Since there are infinite
number of ways to distort the mesh numerically, most of them cannot be properly described on the partial differential equa-
tion level. So, it is more reasonable to define a diffusive mesh velocity directly in the discretized level by modifying local
mesh movement to prevent it from collapsing to neighboring ones.

In the following, we will discuss the one- and two-dimensional cases and give numerical examples, respectively.

3.1. Mesh velocity Ug determined through an elliptic solver

Certainly, many methods can be used to determine the mesh velocity Ug . Here the mesh velocity Ug is determined by
solving an elliptic solver [12,34], which is equivalent to optimizing some functionals in the whole computational domain
[38].

For the one-dimensional case, at t ¼ tn the grid location xn
i and the flow variables are given. Assume that the new location

xnþ1
i of the new mesh has been already obtained, then the mesh velocity Ug for each node is defined by
Ug;i ¼ ðxnþ1
i � xn

i Þ=Dt:
Thus, the key point in the construction of Ug is the determination of the position xnþ1
i using the known conditions at t ¼ tn.

Generally speaking, in order to generate a new mesh, two aspects have to be considered. First, the new mesh should be
smooth. Second, the new mesh will be automatically redistributed and concentrated in the region with high gradients of
the flow variables in order to improve the computational accuracy. These two requirements can be satisfied using the ap-
proach of mesh movement, which is based on the variational approach and described below.

Let x and n denote the physical and computational coordinates. A coordinate mapping from the computational domain Xc

to the physical domain Xp is given by x ¼ xðnÞ; and the inverse map becomes n ¼ nðxÞ. The specific map for the mesh is ob-
tained by minimizing a functional with the following form
eE½n� ¼ 1
2

Z
Xc

ðxxnÞ2 dn; ð3:1Þ
where x is a monitor function which controls the distribution of the mesh. The Euler–Lagrange equations can be obtained
from (3.1)
ðxxnÞn ¼ 0: ð3:2Þ
Therefore, the mesh distribution in the physical space can be directly generated by solving Eq. (3.2). In the above formula, x
is a function of the flow variables, such as the density, velocity, pressure, or their gradients. For example, one can take
x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ af 2 þ bf 2

x

q
; ð3:3Þ
where f is some variable, and a and b are nonnegative parameters, which are problem-dependent.
A second order central difference scheme can be used to discretize the mesh generation Eq. (3.2) and the resulting alge-

braic equations can be solved numerically by iterative methods, such as the Gauss–Seidel iteration. If the monitor function x
is assumed to be constant, i.e., x ¼ 1, the Euler–Lagrange equations (3.2) become the well-known Laplace’s equation, and
consequently, a smooth mesh can be generated.

The extension of the above method to 2D case is straightforward. With the newly generated mesh, the mesh velocity can
be considered as an optimal one if the target is to minimizing or maximizing certain functionals.

We now present some numerical examples. In all cases, the time step is determined by
Dt ¼ CFL min
j

ffiffiffiffiffiffiffiffi
jXjj

q
=ðmax juj þ cÞ;
where CFL is the CFL number and c is the sound speed. In our numerical examples, the CFL number varies between
0:25 � 0:45.
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Example 1 (Lax’s shock tube problem). This test is a Riemann problem with initial data
Fig. 2.
the exa
ðq;U; PÞ ¼ ð0:445;0:698;3:528Þ; x 2 ð0:0;5:0Þ;
ðq;U; PÞ ¼ ð0:5;0;0:571Þ; x 2 ð5:0;10:0Þ:

�

It was proposed by Lax in his early paper, and has been extensively studied by many authors. The computational domain

is x 2 ½0;10�, where 200 mesh points are used to cover the domain. We choose f ¼ q in the monitor function (3.3) with
a ¼ 1:0 and b ¼ 0:1. The computed results by the current scheme (the MMBGK scheme) are shown in Fig. 2, where the solid
line is the exact solution. From Fig. 2 we see that the effect of mesh movement on the solution accuracy is obvious due to the
concentration of mesh points to the region of rapid changes in the flow variables. The solution obtained using the current
second order MMBGK is very close to that obtained using the third order DGBGK scheme from [27].

Example 2 (Entropy wave). This is an example of shock interaction with an entropy wave. A Mach 3 moving shock interacts
with the sine wave, i.e.,
ðq;U; PÞ ¼ ð3:857143;2:629369;10;333333Þ; x 2 ð0:0;1:0Þ;
ðq;U; PÞ ¼ ð1þ � sinð5xÞ;0;1Þ; x 2 ð1:0;10:0Þ;

�

where � ¼ 0:2. The reference (‘‘exact”) solution for this problem is computed by the fifth-order finite difference WENO
scheme with 2000 grid points [28]. In the current MMBGK calculation, the whole domain x 2 ½0;10� is covered with 200 mesh
points. We take f ¼ P in the monitor function with a ¼ 1:0 and b ¼ 1:0. The computed density distribution is shown in Fig. 3.
In comparison with the reference solution, it is obvious that high accurate solution has been obtained. The accuracy of the
current second order MMBGK method is very close to that of a third order DGBGK scheme [27] with a third order WENO
limiter [28].

Example 3 (Blast wave interaction). In this example, we test the interaction of blast waves, see [39]. The initial data read
ðq;U; PÞ ¼ ð1;0;1000Þ; x 2 ð0:0;1:0Þ;
ðq;U; PÞ ¼ ð1;0; 0:01Þ; x 2 ð1:0;9:0Þ;
ðq;U; PÞ ¼ ð1;0;100Þ; x 2 ð9:0;10:0Þ:

8><>:

The reference (‘‘exact”) solution is computed again by the fifth-order finite difference WENO scheme with 2000 cells [28].

In the current calculation, 400 grid points are used in the domain and the reflecting boundary conditions are applied at left
and right boundaries. In our computation we take f ¼ q in the monitor function with a ¼ 1:0 and b ¼ 1:0. The computed den-
sity contours are shown in Fig. 4. The accuracy of the solutions from the current scheme is very close to that obtained using
the third order DGBGK method [27], and is much better than that obtained using a second order Lagrangian method [7].
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Fig. 3. Entropy waves. Density distributions at time t ¼ 1:8 with 200 mesh points. Circles are the numerical results of the MMBGK method and the solid line
is the ‘‘exact” solution.
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Example 4 (2D Riemann problem). We test a two-dimensional Riemann problem which has been studied by many authors
[21,34]. In this test, the determination of the mesh velocity is the same as that for the one-dimensional case. The static
moving mesh method generates a mesh to move mesh points to the flow regions with high gradients.

The initial data for the 2D Riemann problem are
ðq;U;V ; PÞ ¼

ð1:1; 0:0;0:0;1:1Þ; x > 0:5; y > 0:5;
ð0:5065; 0:8939;0:0;0:35Þ; x < 0:5; y > 0:5;
ð1:1; 0:8939; 0:8939;1:1Þ; x > 0:5; y < 0:5;
ð0:5065; 0:0;0:8939;0:35Þ; x > 0:5; y < 0:5:

8>>><>>>:

We carry out the computation in the domain ðx; yÞ 2 ½0;1� � ½0;1� by using both 50� 50 and 100� 100 grid points. The

mesh and density distributions at time t ¼ 0:25 are shown in Figs. 5–7. It is easy to observe that the current scheme sharply
resolves shock waves and the solutions are convergent.
3.2. Mesh velocity Ug determined on the discretized level

In the following examples, we are going to consider to add diffusive mesh velocity in the Lagrangian formulation to rem-
edy possible mesh distortion. Since mesh distortion can be hardly described mathematically on the differential equation le-
vel, a direct implementation of numerical techniques on the discretized level to prevent mesh distortion is preferred.

Example 5 (Saltzman’s piston problem). This problem tests the ability of numerical methods to capture the shock
propagation through a systematically distorted mesh, which has become a benchmark test case [8,7]. The set-up of the
problem is the following. In the computational domain ðx; yÞ 2 ½0;1� � ½0; 0:1�, a mesh with 100� 10 mesh points is used with
the nodal x coordinates
xij ¼ ði� 1ÞDxþ ð11� jÞ sin
pði� 1Þ

100

� �
Dy;
and a uniform nodal y coordinates with Dx ¼ Dy ¼ 0:01.

An ideal monatomic gas with the specific heat ratio c ¼ 5=3 is filled in the box. The left boundary is a movable piston.
Starting from t ¼ 0, the piston is pushing into the box with a constant velocity 1:0. As a consequence, a strong shock wave
is generated from the left end. On the up and down boundaries, a simple extrapolation is used as the boundary condition.
This problem has the exact solution. At time t ¼ 0:6, the shock is expected to be located at x ¼ 0:8, and the post shock solu-
tions are q ¼ 0:6;U ¼ 1:0 (the velocity in the x-direction), and P ¼ 1:333.
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Usually this problem is studied by Lagrangian method. Since the left side is pushed by a piston, the mesh on the left
boundary has to move together with the piston. However, a purely Lagrangian method will cause mesh deformation, so
an ALE method becomes a proper choice for this kind of problem. Here we are going to follow the Lagrangian method as
much as possible. In order to avoid the mesh distortion, all ALE steps are merged into a single moving mesh method, where
the mesh moving velocity Ug ¼ ðUg ;VgÞ is controlled by both fluid velocity U ¼ ðU;VÞ and a newly defined diffusive velocity
Ud ¼ ðUd;VdÞ, i.e., Ug ¼ Uþ Ud. For this problem, since the piston is moving from left to right in the x-direction, the grid
velocity in the y-direction is set to be
Vg ¼ V þ Vd ¼ 0:
So, we only need to define the grid velocity in the x-direction Ug with the inclusion of the diffusive one Ud.
Let xði; jÞ denote the center of the cell Xij, we define the relative distance differences among cell centers by
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DL ¼ xði; jÞ � xði� 1; jÞ;
DR ¼ xðiþ 1; jÞ � xði; jÞ:

�

Then, a diffusive velocity Ud can be set to be equal to
Ud ¼maxfDR� DL;0:0g=ðDRþ DLÞ;
to push the mesh away from each other on the discretized level. Thus, for each point xði; jÞ, the mesh velocity in the x-direc-
tion is given by
Ug ¼ U þ lUd;



12

4

56

7

7
8911

2

1

where U is the x-component of the fluid velocity and l is the diffusive coefficient, which takes a fixed value l ¼ 1:0 in the
numerical calculation.

Based on the above choice Ug , the mesh velocity at a cell interface is the average of Ug in its neighboring cell centers. The
diffusive term Ud plays a role of preserving good quality of the mesh, which is similar to the remapping function of the ALE
method.

The numerical results using the MMBGK scheme are shown in Figs. 8–13. The initial mesh is presented in Fig. 8, while
Fig. 9 gives the mesh at time t ¼ 0:6. The density contours are shown in Fig. 10. The density, pressure, and velocity profiles
are shown in Figs. 11–13 along the line y ¼ 0:05. The current method gives very accurate numerical solution in comparison
with the exact solution and other numerical results [8,7].

Example 6 (Sedov’s blast wave problem). This is a two-dimensional explosion problem to model blast wave from an energy-
deposited singular point. Initially, a uniform medium with zero pressure is distributed inside the domain. A fixed amount of
energy is deposited initially at the origin. As time increases, a blast wave expands away from the origin. Because the initial
pressure outside singular point is zero, the shock strength associated with the blast wave is infinite, and a similarity solution
for the post flow distribution can be obtained. The solution was given by Sedov in 1959 [29]. The exact solution is
particularly useful for testing the accuracy of multidimensional computational schemes. It has become a standard
benchmark problem for the Lagrangian method.

Here we run a two-dimensional calculation using our MMBGK method. The computational domain is
ðx; yÞ 2 ½0;1:1� � ½0;1:1�, an uniform mesh with 44� 44 grid points is used. Initially, one sets the density q ¼ 1:0, the
velocity 0:0, and the internal energy e ¼ 0 for all cells except the cell at origin with an amount of internal energy e ¼ 393:64.
At time t ¼ 1:0, the shock wave arrives at the location r ¼ 1:0 with post shock density q ¼ 6:0 and pressure P ¼ 0:2083.
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Fig. 11. Saltzman problem. Density distribution along a line of y ¼ 0:05 at time t ¼ 0:6. Circles are the MMBGK solution and the solid line is the exact
solution.
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Fig. 12. Saltzman problem. Pressure distribution along a line of y ¼ 0:05 at time t ¼ 0:6. Circles are the MMBGK solution and the solid line is the exact
solution.
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We use the same idea as that presented in the last example to determine the mesh velocity, where Ug is a combination of
the fluid velocity U and a diffusive velocity Ud, i.e., Ug ¼ Uþ Ud. Because the flow velocity is on the radial direction only, a
diffusive velocity Ud is also defined radially. With the density differences around the grid point ði; jÞ,
DL ¼ qði; jÞ � qði� 1; j� 1Þ;
DR ¼ qðiþ 1; jþ 1Þ � qði; jÞ;

�

we define a diffusive term
b ¼maxfDR� DL; 0:0g=ðDRþ DLÞ:
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Fig. 13. Saltzman problem. Velocity distribution along a line of y ¼ 0:05 at time t ¼ 0:6. Circles are the MMBGK solution and the solid line is the exact
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Then, the diffusive mesh velocity is constructed to be Ud ¼ bð1;1ÞT , and the mesh velocity becomes
Ug ¼ Uþ lUd;
where U is the fluid velocity, and l is a diffusion coefficient with a fixed value l ¼ 0:1. The diffusive term is used to preserve
good mesh quality as the mesh mainly follows the fluid velocity. A purely Lagrangian method for this case always results in
the break-down of the computation.
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Fig. 14. Sedov problem. Mesh distributions of the MMBGK method at time t ¼ 1:0.
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Fig. 15. Sedov problem. Density distributions along the diagonal line at time t ¼ 1:0, where the distance r is given by r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xði; iÞ2 þ yði; iÞ2

q
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Circles are the MMBGK results with a peak value q ¼ 5:7 and the solid line is the exact solution.
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The computational mesh at time t ¼ 1:0 is shown in Fig. 14. The density profile at t ¼ 1:0 is shown in Fig. 15 along a diag-
onal line with an angle h ¼ 450 relative to x-axis, where the horizon axis in this figure is the radial distance

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xði; iÞ2 þ yði; iÞ2

q
; i ¼ 1; . . . ;44ði ¼ jÞ from the origin. The pressure profile at t ¼ 1:0 is presented in Fig. 16 along the same

diagonal line. At r ¼ 1 the value of the exact solution for the density is 6. Fig. 15 clearly shows the good performance of the
MMBGK method. The numerical results are more accurate that those presented in [24,6]. In order to check the symmetry
preservation property of the scheme, the density profiles at t ¼ 1:0 for all grid points are shown in Fig. 17, where the x-axis

is the distance between the mesh point and the origin, which is given by r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xði; jÞ2 þ yði; jÞ2

q
; i; j ¼ 1; . . . ;44. Obviously,

Fig. 17 shows that a symmetry has been preserved in by our current method, which is more accurate than those presented
in [7,24,6].
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Fig. 18. Oscillating wall. Initial mesh distribution 10� 70 on a domain ½0:1� 0:7�.
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3.3. Mesh velocity Ug determined by the moving boundary

Here, we are going to test the Navier–Stokes solution above a moving wall. Due to the specific problem, the mesh velocity
follows the boundary movement, i.e., Ug ¼ ðUg ;VgÞ ¼ ðUwall;0Þ. Therefor, there is no mesh tangling problem.

Example 7 (Viscous solution above an oscillating wall). This is the well-known Stokes’ second problem, which describes fluid
motion above an infinite flat plate which executes sinusoidal oscillations parallel to itself. This problem has been simulated
earlier by the unified moving grid gas-kinetic method [17]. The fluid above the plate is initially stationary. The governing
equation of velocity U in the x-direction is
@U
@t
¼ m

@2U
@y2 ; ð3:4Þ
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Fig. 19. Oscillating wall. Velocity distributions at time xt ¼ p=2, where the circles are the results of the MMBGK method and the solid line is the exact
solution.
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with boundary conditions
Uwallð0; tÞ ¼ U0 cos xt; Uð1; tÞ ¼ 0:
The exact solution for the above problem is,
Uðy; tÞ ¼ U0e�y
ffiffiffiffiffiffiffiffi
x=2m
p

cos xt � y

ffiffiffiffiffiffi
x
2m

r !
: ð3:5Þ
At y ¼ 4
ffiffiffiffiffiffiffiffiffiffi
m=x

p
, the amplitude of U is equal to U0 expð�4=

ffiffiffi
2
p
Þ ¼ 0:05U0, which means that the influence from the wall is con-

fined within a distance of order d � 4
ffiffiffiffiffiffiffiffiffiffi
m=x

p
. Since the gas-kinetic scheme solves the compressible Navier–Stokes equations,

in order to simulate the above incompressible limiting solution the Mach number for the compressible flow takes a small
value, i.e., M ¼ 0:15. The kinematic viscosity coefficient takes a value m ¼ 0:00046395, and a mesh size with 10� 70 points
is used [17].

Figs. 18 and 19 show the mesh and simulation results at xt ¼ p=2, where the exact solution is well captured. For a purely
Lagrangian method, due to large velocity shear in the boundary layer, the Lagrangian method will stretch the mesh severely.

4. Conclusion

In this paper, a MMBGK scheme has been developed based on the integral equations of fluid dynamics. This scheme the-
oretically unifies the ALE method by properly choosing a mesh velocity, which not only consider the fluid velocity, but also
the regularity of the mesh distribution. In other words, this paper presents a general framework, which can be used to design
moving mesh method without remapping or data reconstruction between old and new meshes. The philosophy in the cur-
rent research is that we need to avoid mesh distortion from the first place in the computation instead of remedying the dis-
torted mesh afterwards. Once a mesh is distorted, the form of distortion can be infinitely diversified and it will be hard to
design a universal remedying method. Since most distorted mesh cannot be precisely described by differential equations, the
direct introduction of a diffusive mesh velocity on the discretized level is important, even though there may not have a un-
ique way to design such a diffusive velocity. The current proposed methodology is useful in the unification of many existing
moving mesh methods. Numerical examples in this paper demonstrate the accuracy and efficiency of the MMBGK scheme.
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